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An essential role of Clifford algebras for quantum-chemical finite-dimensional 
orbital models of many-electron systems is pointed out. The relationship 
between Clifford algebra matric units, the generators of the unitary group 
approach (UGA) and the higher order replacement or excitation operators, 
as well as between their first and second quantized realizations, is elucidated. 
The usefulness of higher order replacement operators in the spin-adaptation 
of various many-body theories is briefly outlined and illustrated on the 
orthogonally spin-adapted coupled-pair approach. A natural connection with 
the Clifford algebra UGA is explored and new possibilities for its exploitation 
in large scale configuration interaction calculations are suggested. 
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1. Introduction 

On the occasion of his 65th anniversary, we dedicate this paper to Professor 
Jaroslav Kouteckj~, who, in addition to his numerous pioneering contributions 
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to theoretical electrochemistry, surface science and the theory of the chemical 
bond, was one of the first quantum chemists to formulate a second-quantization- 
like formalism [ 1 ], specific for the particle-number conserving systems. Following 
Matsen [2], Kouteck~ and Laforgue [1] call the relevant operators- which can 
also be viewed as unitary group generators- the basic symmetry operators or 
BSOs, employ their first and second quantized forms and consider their extension 
to nonorthogonal bases. Later, a similar formalism was also exploited in a general 
study of alternant systems [3] and biradicaloids [4, 5]. 

The realization of the importance of unitary or general linear groups for particle- 
number conserving systems can be traced back to the pioneering days of quantum 
mechanics [6]. It was not, however, till the late sixties and early seventies that 
the unitary group was exploited in the shell model description of nuclei [7], 
atoms [8] and molecules [2, 9-12] as a dynamical group 1 [13, 14]. In such a role 
it enables an automatic spin-adaptation of the theory by exploiting the chain 

U(2n) ~ U(n) |  U(2), 

for systems with spin-independent Hamiltonian, given as a bilinear form in terms 
of U(n) generators. The exploitation of this formalism became particularly 
widespread after the realization that a rather complex U(n) representation theory 
[16] can be drastically simplified in the many-electron case [12, 17]. This formal- 
ism became known as the unitary group approach (UGA) 2 to the many-electron 
correlation problem [12, 17-19], and has primarily been exploited in large scale 
configuration interaction (CI) calculations [20]. The interested reader can consult 
numerous reviews [17, 21-24] or monographs [25-27] dealing with this topic. 

Recently, UGA was further extended through an embedding of U(n) in a much 
larger unitary group U(2 n) [15, 28]. This approach has been named the Clifford 
algebra UGA (CAUGA) in view of the key role played by the related Clifford 
algebra spinorial basis, which enables the representation of relevant N-electron 
spin-adapted states as linear combinations of totally symmetric two-box Weyl 
tableaux of U(2n). Since the U(n) generators may be simply related with those 
of U(2 n) [29], the action of any particle-number conserving operator (which is 
expressible in terms of U(n) generators) in this basis is trivially determined. 
CAUGA seems to be also easily amenable to many-electron system partitioning 
[28] (for UGA system partitioning see [30]). 

In this paper we wish to show that the operators considered by Kouteck2~ and 
Laforgue [1] appear naturally in UGA and CAUGA descriptions, and may also 

1 A unitary group is not a symmetry (invariance, degeneracy) group of  a general many-fermion 
system but ra ther -  loosely speaking - its dynamical or noninvariance group [13, 14]. The latter, or 
the related spectrum generating algebra, are required to contain all the bound states in a single 
irreducible representation (irrep). In this sense, it is rather the larger group U(2 ") of the Clifford 
algebra unitary group approach (CAUGA) [15], which plays this role, since all the possible multiplets 
are then contained in a single irrep of this group 
2 Or GUGA (graphical UGA), emphasizing the graphical representation of the electronic Gel ' fand- 
Tsetlin basis, which was introduced by Shavitt [18] 
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be generalized to higher than one- and two-particle operators, if desired. In 
particular we wish 

(i) to stress the basic importance of Clifford algebras for many-fermion systems, 

(ii) to elucidate the relationship between the first and second quantized realiza- 
tions of U ( n )  and U(2") generators, 

(iii) to point out the usefulness of higher-order analogues of U(n)  generators 
for various many-body theories, in particular for their spin adaptation, which we 
will illustrate for the coupled-cluster theory and, finally, 

(iv) to outline some new possibilities of CAUGA in large scale CI  calculations. 

2. The first and second quantization formalisms 

We shall consider an N-electron, n-level model system described by a spin- 
independent, particle-number conserving Hamiltonian H. In the usual wavefunc- 
tion description, sometimes referred to as the first-quantization formalism, the 
appropriate space in which H acts is given by the antisymmetrized Nth tensor 
power of a one-electron space V2n spanned by 2n orthonormal spinorbitals II}, 
[ = 1 , . . . ,  2n. 

In the second quantized description one associates with each spinorbital II) an 
annihilation operator X~ as well as a corresponding creation operator X~, given 
by the Hermitean conjugate of 32i, as the notation implies. These operators act 
in the appropriate Fock space ~ and satisfy the anticommutation relations 

{X~, X:} = {X~, X~} = 0, {XI, X~} = 6u, (1) 

where the anticommutator {A, B} is defined as 

{A, B} = A B  + BA, (2) 

as well as the so called vacuum property 

X, L0) = 0, (V!) (3) 

where ]0) represents the physical (true) vacuum. We also define the corresponding 
number operators N~ in the usual way, 

N,  = X~,X, ,  (4) 

as well as their complements N~, 

N,  = 1 - N ,  = X,X*, .  (5) 

We note that these operat6rs form a system of mutually commuting Hermitean 
idempotents (projectors), namely 

N~ = N,, ~r~ = ~r,, N ;  = N,, ~r~ = )Q,, (6) 

[N,, N1] = [N,, Nj] = [N,,/~rj] = 0, (7) 

where 

[A, B] = A B  - BA. 
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Moreover,  

NI_N, : 0, (VI).  (8) 

The number  operators (4) and (5) can be used in turn to define the following 
compound projectors 

e~x} =- e l , , 2 . . . ,  r :-~- Nt,  N,~ " " " U l r ~ [ l r + l  " " " J ~ f l z , ,  (9) 

where ( I l i2""  �9 12,) is a permutat ion of  ( 1 2 . . .  (2n)). We use curly braces for 
the set {I} to emphasize the symmetric nature of  the product  involved, Eq. (9). 
I f  the set {I} is empty, we have 

e{o}=- eo = ~q �9 " �9 ~r2,. (10) 

We easily find that 

�9 - (11) e~i} = e{t} ,e{t} -- e{,} 

and 

ei~}e{j} = c${,},(jie{x}. (12) 

These orthognal projectors provide the resolution of identity, since 

2n 

Z e~,} = H (N ,  + Nj )  = e. (13) 
I J = l  

3. Clifford algebras 

We recall that a Clifford algebra Cm is an associative algebra generated by the 
Clifford numbers ai satisfying the anticommutation relations 

{a,, aj} = 230. , ( i , j =  1 , . . . ,  m) .  (14) 

A general monomial  in C,~ is a product  of  Clifford numbers a~'la~ z" �9 �9 a ~  m with 
vi = 0 or 1 since, in view of  Eq. (14), 2 = 1. We can thus establish a one-to-one 
correspondence between these monomials  and binary strings {v~v2 ' ' "  vm}, so 
that dim C,, = 2 m. 

It is now easy to see that the fermionic algebra, defined by the second quantization 
creation and annihilation operators, Eqs. (1)-(3), is isomorphic with the Clifford 
algebra C4,. Indeed, we find easily that the following linear combinations 

o ~ , = X , + X * ~ ,  ( I =  1 , . . . 2 n )  

o~,+2,, = i (Xx  - X ; ) ,  (15) 

satisfy the relations (14) for Clifford numbers. Conversely, we have that 

X,  - �89 - ia,+2,), (16) 
? 1 

X I = ~( a i  + iax+2,,). 
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We can also easily construct  a matric basis for this algebra [31]. For  this purpose  
we in t roduce the fol lowing nota t ion for  arbitrary products  o f  the creat ion and 
cor responding  annihilat ion operators,  

X~II - X t  v t  t 
- I,"r2" " " X , r ,  (17) 

x m  = x , r"  " x , 2 x i , ,  

where [ [ ]  designates 3 the ordered set {[1, [ 2 , . . . ,  L} ,  I1 < 12 <" �9 �9 < It. Note  that 
X ~  1 is again the Hermi tean  conjugate o f  X u l .  It can be easily shown that 

XE,]eo = eoX~,] -= O, (18) 

which implies that  

t eoX~i jX t j j eo  = 6[,],[jjeo. (19) 

We can thus define the matr ic  units by 

e[1]tj I = X ~ l ] e o X [ j  ] �9 (20) 

Using Eq. (19) we see immediate ly  that indeed 

e[i][j]etK]tL ] = 6[j][K]e[~][L 1. (21) 

We note also that 

e{z~ = e~lu ~ , (22) 

since 

[1Vi, X j  ] = 6 u X r ,  (23) 

so that 

e = ~ etl]u ~. (24) 
l*] 

4. The relationship between the first and the second quantization formal isms 

The projector  eo-= e{ol, Eq. (10), associated with the empty set {0} ~ •, projects 
onto the true vacuum state 10), so that clearly 

eol0)=[0) and (0leo=(0[, (25) 

while any other  state conta ining at least a single particle, e.g. 1[. �9 �9 lk" �9 �9 ]), where 

. . . . .  X* X t . .  X~r]0 )=X/ , J ]0 )  (26) ][[])  ][[112 [r])--  'z ,2" 

is annihilated, i.e. 

eo[[" �9 �9 [ k ' "  "7) = 0 = ( [ . . .  t k . .  "] leo .  (27) 

We can thus identify this opera tor  with the ke t -b ra  vacuum product ,  

eo = 10)(01, (28) 

3 We now enclose I in square brackets to emphasize the antisymmetric nature of these products 
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so that 

e[i][j]  = X ~ I ] ] O ) ( O ] X [ j ]  = I[I])([J]l. (29) 

We can distinguish the particle-number conserving operators erjlt/~l, when both 
sets [J] and [K]  have the same cardinality, from the particle-number non- 
conserving ones, which transform between the subspaces with different particle 
numbers. Further, the set of particle-number conserving operators can be divided 
into (2n + 1) subsets according to different cardinalities of [I]  and [J] in (29). 
We see immediately from the product property, Eq. (21), that any such subset 
is closed under multiplication and, hence, forms a subalgebra of C4,. In particular, 
when the cardinality is one, so that we can make an identification [I]  = I and 
[J] = J, we obtain the set of operators 

e1j = [I)(JI, (30) 

which multiply in exactly the same way as the usual matric units, i.e. 

e l yeKL  = 6 j K e I L .  (31) 

It is well known that any associative algebra can be turned into a Lie algebra by 
defining the Lie product as a commutator. In the present case this gives 

[eu][j], eEt<3Et.3] = 6 [ j q [ K ] e U ] [ L ] -  ~[L][I]e[K][j] ,  (32) 

which is isomorphic with the Lie algebra of U(22") or, in the orbital case (see 
below), U(2"), i.e. the group exploited by CAUGA. Clearly, Lie-algebraizing the 
one-particle subalgebra spanned by the operators (30), we get the Lie algebra of 
U ( 2 n ) ,  which is exploited in UGA. 

In the second quantization formulation we realize normally the U(2n) generators 
by 

' X ~ X j .  (33) e j  ~ 

From now on we shall also consider the corresponding orbital generators given 
as partial traces of the generators (33). Writing the spinorbitals [I) as products 
of orbital and spin kets, [I)---]/)l/x), we thus define 

#z t Ej = 2 ej~ . , +X, t~Xj~  , ( i , j =  1, . .  n) .  (34) = X~Xj~ * 
/* 

These operators can be regarded as unitary group generators since they satisfy 
the commutation relations 

[e~, eLK] K 1 I K = 3 j  eL--  r , (35) 

and similarly for the orbital group generators E~. However, they no longer form 
an associative algebra, since 

I K IK K I 
e j e L  = ejL + 8j eL, (36) 

where 

" = x * , x * , ,  x ~ x ~  (37) e jL  
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cannot be represented as a linear combination of e~ operators. The relationship 
(36) must be compared with the corresponding one given by Eq. (31). Clearly, 
both operator sets span isomorphic Lie algebras of U(2n) but only the latter one 
also forms a corresponding associative algebra. 

It should be pointed out, however, that for many applications the operators e ,  
[or, generally, the matric units of Eq. (20)] are not very convenient because of 
their high particle rank. By the particle rank of a particle-number conserving 
operator we understand, as usually, the number of creation-annihilation pairs 
that enter its second-quantized representation. Using Eqs. (10) and (20) we can 
easily verify that eu is a (2n - 1)-particle operator when I r J and a (2n)-particle 
operator when I = J, while the particle rank of ex~c,jL is (2n--2),  ( 2 n -  1) or 2n, 
depending on how many of the indices I, K, J, L are different. On the other 

zK 
hand, eJ or el l  are one- and two-particle operators, respectively. Being of such 
a low particle rank, these operators have proved to be particularly useful in 
various many-body theories, most notably in the coupled-cluster theory [32]. In 
fact, it is the possibility to generate higher rank operators as products of lower 
rank operators, as is exemplified in Eq. (36), that underlies one of the most 
powerful tools of the many-body theory: the exponential cluster ansatz [32-34]. 

To generalize definitions (33) and (37) to an arbitrary particle rank, we set 

tJl - Xu lXEJI ,  (38) 

which differs from Eq. (20) only in the absence of the vacuum projector between 
the strings of the creation and annihilation operators. The operators (38) will be 
referred to as the spinorbital replacement operators, since their action consists in 
replacing the spinorbitals from the set [J]  by the spinorbitals from the set [ I ]  in 
all the Fock space vectors on which ~ u l  ~[Sl acts. The operators eu][j I performs 
essentially the same task, but only for one basis vector [[J]) from the Fock space, 
giving zero result when acting on all other basis vectors of the form (26). 

Expanding Eq. (20) and solving recursively for ~zJ (starting with 2n-particle 
operators), we can easily verify that spinorbital replacement operators can be 
represented as follows 

[ X ]  _ _  e [  l l l i 2 ] [ J i 1 1 2  ] ...~ . . . , e[ j ] -  e[l][j] q'- ~' ellit][jlt]-b ~' (39) 
11 I 1 < I 2  

where the prime indicates that the summation extends over all spinorbitals not 
included in [ I ]  or [J]. All terms in Eq. (39) have the same sign, since the running 
indices I~,/2 . . . .  are placed at the end of [ I ]  or [J] indices, so that the combined 
indices [H1], [JId ,  etc. are not properly ordered 4. When the combined indices 
are brought to the natural order, each term in Eq. (39) must be multiplied by 
the sign of the permutation needed to perform the ordering. 

4 Note that in Eq. (39) we do not require the sets [H~], [ H L I 2 ] , . . .  , e tc .  to be ordered so that the 
generators e[t..][s.. ] are defined by generalizing Eqs. (29) and (26) to unordered spinorbital sets. 
Clearly, they will differ at most by a phase factor from the corresponding operators with ordered 
sets, Eq. (29) 
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Equation (39) and inverse equation expressing e[ii[ .q in terms of ~t~] (i.e. Eq. 
(20)) show that the replacement operators constitute another basis of the Lie 
algebra of U(22"). Since the matrix transforming one of these basis sets into 
another is not unitary, the commutators of ~[z] ~[j] are not as simple as those of 
et~]tj], Eq. (32). In fact, only the set of one-particle operators e~ is closed under 
commutation. These operators form a basis for the Lie algebra of the U(2n) 
group embedded into U(22") via SO(4n+ l )  [15]. Thus, Eq. (39) gives an 
important relationship between the U(2n) and U(22~) generators, exploited in 
the development of CAUGA [15]. 

It is worthwhile to remark that the set of two-particle operators ~r e j r  is not closed 
under commutation (since the commutator of two two-particle operators is in 
general a three-particle operator). This unpleasant fact considerably complicates 
the many-body theory beyond the one-particle approximation. 

There exists another relationship between the matric units eE~t~ ] and the replace- 
ment operators e[J], which is particularly important for the first-quantized applica- 
tions [35]. Denoting by A i n u  the restriction of an arbitrary operator A to the 
N-electron layer of the Fock space ;~ and assuming that the cardinality of [I]  
and [J] is k, we can write 

e[~]r ~N =0  

and 

for N < k,  

N 

e [ ~ ] I , ~ N  = ~ e [ z ] t . q ( i l "  " ik)  for N > - k ,  (40) 
i l  < .  �9 . < i  k 

where the operator e[i][j](il �9 �9 �9 ik ) ,  now acting only on the coordinates of electrons 
i ~ , . . . ,  ik, can be represented as the integral operator with the kernel 
d ? [ z l ( i l . . ,  i k ) ( a ~ j ~ ( i ] ' ' "  i'k). The functions ~bti I and ~b[j I are the first-quantized 
representatives (Slater determinants) of the state vectors I[I]) and I[J]) and ik 
denotes here the set of  spatial a n d  spin coordinates of the electron ik. In Eq. 
(40) we assume that when e[z][.q(i~ �9 �9 �9 ik)  acts on a function ~O of N variables, 
then ~O is treated as a function of k variables i t  �9 �9 �9 ik,  all other variables being 
kept fixed. Otherwise e[t][jl~b would vanish for k ~ N. 

Still another, somewhat less explicit relation between the basis of Eq. (38) and 
the matric units of Eq. (20), has been studied in detail by Moshinsky and Quesne 
[36]. Using the states (26), r = 0 ,  1 , . . . ,  2n as a basis of the 22"-dimensional 
carrier space for the fundamental representation of U(22"), it is easy to see that 
the operators (38) yield "almost" the 22"-dimensional matric units. We note here 
that a convenient ordering of the states (26) can be achieved by interpreting 
their occupation number m l , . . . , m 2 n ,  where m~=0, 1, as binary numbers 
(ml �9 �9 �9 m2,)2, as is the case in CAUGA [15, 28] (see also Sect. 7). For the present 
purposes, however, it is sufficient to consider groups of states I [ I1 , . . . ,  L]>, having 
the same total occupancy r = Y~ m~. Assuming, thus, that the states (26) are ordered 
according to the increasing particle number, we find easily that the general matrix 
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representative II([K]Ie['~]I[L])II, w h e r e  [ I ]  = U , , -  �9 �9  L ] ,  [ J ]  = [ J ~ , .  - � 9  L ' ] ,  [ K ]  = 

[ K , , . . . ,  Kp] and [L] = [ L ~ , . . . ,  Lp,], has the form [36] 

p'< r' p'= r' p '> r' 
p < r  0 I 0 I 0 

- - _ _ ]  . . . .  

p = r  0 I ~[I],t~] I 0 ' 
- - - '  - - I I  

p > r  O I  0 II J" 

(41) 

where only the block f has a more complicated structure. We can thus achieve 
the desired result by projecting out the states with p > r or p' > r'. This can be 
achieved using a standard projection operator [36] 

f~' = t=~+l \ r - -~-  t ] '  (42) 

with IV being the total number operator ] Q = ~ I  N/. Thus, defining the new 
operators as 

~t1~ ttl r (43) [j] = e[j]jr, , 

we obtain the desired generators of U(22"). Note that we can write equivalently 
the desired projector as 

2 n  r '  

f ~ , = i -  ~ It)(t I= E It)(t[, (44) 
t = r ' + l  t = O  

where Lt)(tl is the projector onto the t-particle component of the carrier space, 

It>(t[ = E U , , . . . ,  ~]>([x, . . . . .  ~]q. (45) 
u] 

We then find easily that 

�9 . . x , x ~ , . . . x ~ ,  [t>(t 
~[J] t 

= x ~ , l .  . .  x ~ x , , . . ,  x~,l~')(~'{ 

= x l , . . .  X~,~IO><OIX.,r,'''X,, 
= I[I])([J][ = e[,~[j 1, (46) 

thus completing the "full circle" in investigating the relationship between the 
first and second quantization formulations. The above development clearly indi- 
cates the basic importance of Clifford algebras and related U(2 z") or U(2") 
groups for the general theory of (2)n-level fermion systems. 

5. Orbital replacement operators 

High-rank spinorbital replacement operators ~tq ~EJJ can also be defined recursively 
as implied by Eq. (36). This is particularly convenient for spin-free orbital 
analogues of e[~]. Labelling orbitals with lower case Greek letters, we thus define 

E ~  ~ ~ ~ ~ = E ~ E ~ - 8 ~ E ~ ,  (47) 

E~V _ ~ _  ~ r ~  _ ~ etc., (48) 
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where E~ are U ( n )  generators, Eq. (34). These operators will be referred to as 
orbital  replacement  operators or E-operators  for short. While the rank-two 
operators (47) have often been used, since they naturally arise in the normal 
product form of two-particle operators [1, 3-5, 19, 32, 37], the generalization to 
higher orders was systematically employed only recently by Kutzelnigg [38], who 

oqS. �9 �9 calls them "excitation operators". Since the action of  E ,  .... replaces everywhere 
the orbitals ~, u , . . .  by the orbitals a, f l , . . . ,  and since this replacement may 
also represent a de-excitation or a simple permutation of orbitals, we prefer the 
name "replacement operators". Even earlier exploitation of these operators is 
due to Hinze and Broad [39], who call them "spin-free reduced density operators". 
This name is justified by their close connection with spin-integrated reduced 
density matrices, discussed at the end of this section. 

The first-quantized non-recursive definition of  E-operators is also possible. For 
the N-electron layer ~-N of  the Fock space we can write 

E % .... ~ I f f N = 0  w h e n k > N ,  

and 

N 

E % % I ~ N =  E e ~  . . . .  ~ ( i , ' ' ' i k )  fork<--N,  (49) 
i l  ~ " . . 7~  i k 

where e,,,...~,~%'"~ is the k-electron integral operator with the kernel 
G,( i , ) '"  4,~(" * ' �9 tk)6~,(t~) " �9 �9 ~b~.~(tk),* " 4~a are the orthonormal orbitals on which 
the U ( n )  transformations act, while i~ �9 �9 �9 ik designate the spatial coordinates of 
e l e c t r o n s  i I . . . .  , ik. The operator e~,Z~.~ can also be viewed as the ket-bra operator 
of the form ]4~, �9 "" ~b.~)(&., �9 "" ~b,~]. When k = 2 and N-> 2, Eq. (49) simplifies 
to 

N 

i < j  

It should be noted that the definition (49) is actually more general than the 
recursive definition through (34), (47), (48), since it also applies to an arbitrary 
tensor space V~, N and not only to antisymmetric Fock spaces. The E-operators 
so defined span the algebra of bisymmetric operators discussed extensively in [40]. 

The E-operators may be easily symmetry adapted, since the symmetric group & 
acts naturally on a general operator E % ~  as on any tensor. Since a simultaneous P'I "" "/-Ok 

permutation of the lower and upper indices leaves these operators unchanged, e.g. 

E , ~ '  rT~'~ (51) 

it is immaterial whether Sk will act on the upper or lower indices. 

For two-particle operators we simply obtain 

~2]F.~--= ~F ~ -  ~ ~ (52) -- ~,~ -- j.v - E ~.v + E ~.,., 

D 2 ] E , ~  ~ 3 E , ~  B ,~3 ~o~ 
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where we employ either the $2 irrep symbol, or the corresponding spin multiplicity 
(2S+1) ,  to label the resulting symmetrized (or orthogonally spin-adapted) 
operators. In the following we shall employ the (anti)symmetrizer with respect 
to indices a and/3, 

~%e~ = 1 + ( 2 -  m ) ~ ,  (53) 

where ~,t3 permutes indices a and /3, and m = 1 or 3. Equation (52) can then 
be re-written in the following compact way 

m / : ?  ~13 m o p  1 7  =/3 _ . .  = ~,~13~.~. (54) 

When a, b (r, s)  designate the occupied (unoccupied) orbitals relative to a 
closed-shell determinant qbo, then the operators (54) acting on qbo generate 
(unnormalized) part icle-part icle-hole-hole (pp-hh)  coupled biexcited singlet 
configurations, whose advantages over other possible coupling schemes are well 
documented [41]. 

For three-particle operators, in addition to a symmetry adaptation with respect 
to $3 [38], it is also useful to consider "partially" symmetrized operators. In this 
case, however, we must indicate precisely the indices involved, e.g. 

my r7~13~ _ , . ~ ' ~  (55) 
, J  c~3,x-, ~zpA - -  x_, ~ v h ,  

We shall conclude this section by listing some of  the most useful properties of 
E- operators. 

ce13.. �9 (i) The E-operators are "normal ordered" (cf. [42]) in a sense that (E,~.. .)= 0, 
unless all the indices a/3 �9 �9 �9 �9 �9 refer to the orbitals occupied in the reference 
state ~0, which defines the mean value ( . - . ) .  The reader will note that the 
products of the U ( n )  generators do not have this property. For example, ( E ~ E ] )  = 

2 when a is doubly occupied and r is unoccupied in qbo. Loosely speaking we 
can say that E,~ .... is a "normal ordered form" of  the generator product E ~ E ~ .  �9 �9 
The recursive definition, Eqs. (47), (48), providing the normal ordering, can be 
regarded as a special case of the spin-free Wick theorem discussed below. 

(ii) The E-operators can be multiplied according to a Wick-type rule with all 
pairings having the phase (+1) [38]. Thus, for instance 

I x v ~  A K  - -  ~tJ l x p A  K ~ LP lLJt~ A ~ t  ~ ~ u L ,  I x A K  

~ K U A  i o v a t ~ K  A i ~ la ,  p ~ A K  - -  ~ l q . x ~ K A ,  

= 1 3 - .  = 1 3 . - _  ,~ 13 where 6~ .... denotes the unit tensor ~ .... - 6 . ~  �9 �9 �9 The four-particle term in 
Eq. (56) corresponds to the normal product, the three-particle terms to single 
pairings and the two-particle terms to double pairings. This Wick-type multiplica- 
tion immediately yields all the commutators that appear every so often in many- 
body theory calculations. For example, we easily find that 

[E ,~ ,  E~] = s~17~13 * ~v 17~13 _ ~ 17t3r _ ~13 17~r (57) 
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It can also be shown that the Wick-type rule holds for symmetry-adapted 
operators. For example,  we can write 

- - ~ v  E A K  - -  ~L~IZVAK ~ U I~  J ~ A v K  - - o r  I - ' ~ A K  

where the symmetrized operators are defined analogously to Eq. (55). 

(iii) The symmetry-adapted operators that correspond to Young diagrams with 
more than two columns must vanish in view of  the Pauli principle [this property 
is valid only for the Fock-space definition, Eqs. (34), (47), (48) and not for the 
general definition if Eq. (49)]. In other words, the E-operators  can form bases 
for at most two-column irreps of  the symmetric group. A simple example of  this 
property is the identity 

E = ~  ~- r T ~  ~- ~ ~- ~ v ~  ~_ t T ~ ,  ~ = 0, (59) /zvA ~ x-"/~vA ~ J -" /xuA - -  Jr- ' /zvA - -  Jr-"/~vA - -  a -" /zvA 

which shows that for a given selection of  three occupied and three virtual orbitals 
we can have at most five independent triexcited singlet configurations or clusters 
[43 ]. Obviously, fewer independent  configurations arise when some of the orbitals 
are identical. Thus, assuming that v = A, we obtain using Eq. (51) that 

E ~ +  F. ~ + E ~ = 0, (60) 
b 6 v p  - -  - -  i z v ~ ,  - -  ~ l a . p  p 

obtaining two independent  triexcited singlets. If, in addition ]3 = y, we have 

E ~  + ~ / ~ a  = 0, (61) 
l ~ v v  - -  - - - -  i x v v  

and only one configuration results. 

(iv) The expectation values of  E-operators of  rank k provide the elements of  the 
spin-integrated kth order reduced density matrix [44]. For a closed shell reference 
state, such a density matrix is easily obtained by symmetrizing the unit tensor 
6~, .... ~ with the operators from the center of  the group algebra of  S~. For k = 2 

P ' l ' "  "//'k 

and k = 3, Eqs. (47) and (48) give (assuming that all the indices pertain now to 
occupied orbitals) 

( E ~ )  = ( 4 - 2 ~ ) 6 ~  = (~S~ +3  5e~e)6~,, (62) 

( ~ , o t f l y \  _ _  I ' Q  __ A ( ~ { 1 2 } - 3 -  ") (ft. {3}~ R ~ - -  / ' J  (. '0121] -.L A ~ ' [ 1 3 ] ~  ~ e / 3 ' Y  ~ , ~ / -  t . . . . . .  ~ , . ~  - t . . . . .  ~ , . ~ ,  ( 6 3 )  

where @x} are the class sum operators for the permutat ion group of k indices 
(either ~/3y. �9 �9 or /xu~.-  .) and 5 et~ are the "character  operators"  (character 
projectors), providing an alternative basis for the center of  the corresponding 
group algebra. The precise definition of  5 erx~ is 

~[x]= Z X~x]{#} @"}, (64) 
{~} 

where the summation extends over all classes {/z} Of Sk and X~a]{/~} is the character 
of  a class {/z} in the irrep [A]. For k = 2, 5 ~t2~ and 5 d ~  reduce to tSe~e and 35r 
respectively. For k = 3, the explicit forms for the class sum and character operators 
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a r e :  q~{12} : ~a13 + ~fl~' -I- ~ a ' , / ,  ~{3} = ~ V  + ~ ,  ~of211 = 2 - (~{3} and ~ o q  = 

1 - ~{12}+ @3t. In the general case (for an arbitrary k) we find that 

- ' ~  ~ { " ~  ~ c ~ .  (65) ( ~ ; c - - ~ ) = ( _ 1 )  ~ E ,  ~ ,  . . . .  . . . ~ ,  
1 " '  k 

where the summation extends over all classes of  Sk and n (~/is the total number  
of  cycles in the class {/x} or, equivalently, 

(E~;22~2) = E ..-"Ea~-ct[~l~'~ ~. ...... ~ ,  (66) 
Ix] 

where the summation is over all two-column irreps of  Sk and rn [al is the 
spin multiplicity associated with the representation [A], i.e. m E a l = b + l  for 
[A] = [2~lb]. 

(V) In various applications we often encounter density matrices which are sym- 
metrized with respect to some indices. In order to see how to perform such a 
symmetrization, we first consider ? ~ F ~  Using the first Eq. (62) and the fact that 

m,slaoe,8~o~,8 = ( 2 -  m)m~fa ,~ ,  (67) 

we obtain 

( m E ~  = mS~t314-2(2- m ) ] 3 ~  = 2m '~w ~t3 (68) - - t x v l  o ~/3 tJ ix v . 

Analogously, writing @3} as ~ r  and replacing ~ by ( 2 - m )  in 
view of Eq. (67), we can easily symmetrize m F ~  [cf. Eq. (55)]: - - / J . v ~  

\ " - - ~ x / -  2m ~5~t~(2 - ~ ,  - ~" ~m,.~a ~ ~ r  (69) 

A straightforward generalization for the four-particle case gives 

, ~ , . ~ ,  - ~ . .  ~ [ 4 - 2 ( ~ v  + ~ a  + ~ + ~'~a + ~ )  

+ ~ ] a , ~ .  (70) 

This result can be further symmetrized in additional indices following the same 
technique. 

6. Application to the coupled-cluster theory 

The set of  operators mE~,  where a, b (r, s) designate the occupied (unoccupied) 
orbitals in a closed shell reference determinant ~Po, forms a natural basis for the 
expansion of the pair-cluster operator T2 in the orthogonally spin-adapted cou- 
pled-pair  theory [45, 46]. To simplify the notation, we assume in this section that 
an unrestricted summation is carried out over all those indices (not necessarily 
repeated),  which appear  only on the right hand side of our equations but not on 
the left hand side. Thus, we can write that 

T2 lm~.ab m rs =3 ,rs E~b, (71) 

where the implicit summation over m extends over only two values of m, namely 
m = 1 and m = 3. The cluster amplitudes '~t~ are simply related to the unnormal- 
ized amplitudes (a~a21"221ala2)s of [45] by 

'~t~s b = ( 2 -  m)m-1/2(rsl'~z[ab)(m_l)/2. (72) 
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They may also be related to the geminals r~ ( r~ ,  r2) of the first-quantized coupled- 
cluster theory [35] via the overlap integral 

mt~b = (q~r~b~ ['ramb), (73) 

where &~, ~b~ designate a pair of virtual orbitals. The amplitudes mt~rb are assumed 
to have the following symmetry properties 

m ba ~t"b -- ~tb~ -- (2-- m) trs m ab . = -  . ~ -  =(2-m)  t~, (74) 

which guarantee that the number of independent coefficients in (71) is the same 
as the number of doubly excited singlet configurations. 

We shall now illustrate how the E-operators of Sect. 5 can be used to evaluate, 
in a rather straightforward and selfcontained way, the quadratic part "Q~s b of 
the orthogonally spin-adapted coupled-pair equations. This quadratic part can 
be defined as [32, 35]. 

1 m ab 
rnQarbs = ~ m  ( Ers [[H, T23 , 7"2]), (75) 

where (. �9 .) denotes the expectation value with respect to the reference state ~0 
and the factor 1/m is introduced for convenience. Writing the Hamiltonian H 

1 t~V~)LK 1 m'tcc'l~pp' exploiting the symmetry properties of as H=~vx, ,r~, , ,  and T 2 as T2= ~ -pp '~cc ' ,  
m' r the cluster amplitudes tpp,, Eq. (74), and of the two electron integrals ~'~ PhK = 

(&a4~lr~-]14~), and using Eq. (56), we can expand the inner commutator in 
(75) as 

[H, T~] -!''€ ~ " ~ ' = ~ "  ~"~" '  ~ '  ~ '  ~ - - 2 V A ~  tpp'L~ l~cc' ~ ~tJAK tpp ,E cc, 

1 I~v m ' , c c ' l ~ h p p '  1,,p.u m' tcc '  l~pp" (76) 
- -2~)Ac  rpp"L" l ~ ' c ' - - 4  t~ CC' ~pp" - -  Izg" 

From now on we assume that the indices a, b, c, c', d, d ' ( r , s ,p ,p ' ,  q, q') label 
exclusively the occupied (virtual) orbitals, the indices A, K, /z, ~, range over all 
orbitals and m, m', m", designating the multiplicity, equal to 1 or 3. Using once 
again Eq. (56) (and its appropriate generalization) to evaluate the outer commu- 
tator in (75), and realizing that most of the resulting pairings give a vanishing 
contribution to 'no "b . . . .  we find that 

mQa, b = mQ~b(123 ) + mQ~b(45) (77) 

where 

m ab 1 qp m ' t cc '  m " t d d ' ( r n ~ a b  l~AKp'q' \  
Qrs (123)=~m v ~  "ep' -qq'~ --rs ~dcc'd'/, 

and 

(7s) 

1 - -  m '  cc' m" d d ' ~ m l ~ a b  
mQ~b(45) = 8m vdpp' tpp,  tqq,, --rs Ec qq') 

1 pp'  m'~cc'  m"~dd' /mlz2rs  l ~ h q q ' \  
4m ~)Ad tpp '  t q q , \  l-" ab ~" cc 'd ' / .  (79) 
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In Eq. (77) we have employed the partitioning of ~Q~b into the sum of the 
contributions from the hard-to-compute diagrams (diagrams 1, 2, and 3 of [47]) 
and from easily "factorizable" diagrams (diagrams 4 and 5 of [47]), discussed 
in detail in [47] and [48] and often exploited in practical calculations [35, 47-51]. 
A deeper physical meaning of an approximate cancellation of the first three 
diagrams has been elucidated in [52]. 

The evaluation of the first term in Eq. (79), which we denote by "A~ b, is 
straightforward if we use Eq. (58) and note that both possible double pairings 
give an identical contribution. Using, further, Eq. (68), we obtain 

m A a b  __ 1 
- ~  rs 

4 m  
pp'  rn ' tcc '  m " l d d ' [ m ~ a b  ~ 

- -  - -  l )  dd" - pp'  - rs \ ~ c c ' l  

l m r ~  pp '  m '  ab  m"  d d '  
- -  ~ ) f a b U d d  , t p p ,  trs 

- - - -  pp '  m t a b  m d d '  
- -  Udcl,  -pp '  t r s .  ( 8 0 )  

mcf i  m ' + a b  " l ~  m ab In arriving at the last equality we employed the fact that o~b ,pp,= Z, U m m ,  tpp ,  

and that m" must equal m since otherwise "" d d '  m t a b  t~ and "l.)dd,PP' . p p ,  would have a 
different symmetry under the interchange of d and d', so that the sum over d 
and d' would vanish. 

After combining the two terms resulting from the pairings of qq' with rs, the 
second term in (79), denoted by '~Br~ b, takes the form 

1 m R a b  __ 
rs 

4 m  
pp'  m '  cc' m~Pr s m " t d d ' / m l 2 ~ h  \ 

- - - -  V h d  tpp ,  ~rs \ JL~c 'd 'c /  

1 pp' m' cc' m d d '  m'64~ / m l ~ h  \ 
4 m  Vhd t pp ,  l r s  ~" cc ' \  ~ c ' d ' c / .  (81) 

m.c4Y m " t d d '  9 ~  m d d '  In obtaining the secood equality we used the fact that ~ r~ "~s = -~rnrn" trs and 
that we can symmetrize the last factor in cc' (since m' ~' tpp, has already a definite 
symmetry in c and c'). To proceed further, we employ the identity 

rnr,~ m ' r ~  I t ~ a b X  ~ ~ a h b  
m'5~c,(~E~),r  2 m  ~r~ b :~c , tm  O~,d,~_-- r~ '  c'd'~J, (82) 

obtained by additional symmetrization of (69). Inserting (82) into (81) and 
replacing "~'9~ by 2 (since m' ~, tpp, has already a definite symmetry in cc') we finally 
obtain 

~'abVcd tvv. t~s--Vdd' .;p' t r , ,  (83) 

where the first and second terms correspond to diagrams 4 and 5 of [47], 
respectively. 

It remains to consider m ~b Q~s (123). Since r and s can only be paired with p' and 
q' or with q' and p', and since both pairings yield the same result, we can write 

m ab 1 qp m '  cc' m"  d d '  m '  m"(4~ /ml2 ,~ '~A~  \ 
Qr~ (123) = ~ m  yak tpr tqs ~cc' ~,ad'\ "~c'd'dc/, (84) 
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where we have chosen to symmetrize the four-particle density matrix in cc' and 
d d '  and to divide the whole expression by 4. The explicit expression for the 
required symmetrized four-particle density matrix is 

re'Q9 m"cly  /m~,ra '~AK \ 
"J cc' ~-" d d ' \  ~ e ' d ' d e /  

m " f , v  r n ' r ~  m f ~  r t t t~abAt~ - -  t l o a b K A  =2m Jdd '  Jcc' ~rab~m m O c , d , d c ~ - [ 2 ( 2 - m " ) r m , n , - m  ]Oc,a,dc 

t ~  ~ Z b a K  u ~  ~ a K A b  i 
- m Omm"Oc'a'do -- m O m m , O c , d , d c  ~.  ( 8 5 )  

This result can be obtained by further symmetrization of Eq. (70). Actually, such 
a symmetrization is quite simple since, due to the presence of "'6e~/""Seaa,, all 
the terms which differ by permutations of c and c' or d and d' can be collected 
together and represented by a single term. Inserting (85) into (84) and replacing 
m'~cc,m"~Pdd , by the factor of 4, we get 

"Q~(123) = - m '  m_cr ,,pq m'to~' m t a b .  lingo j ~ t  . . . . .  pq 
r s ~ c c '  - p r  - q s  ~ 2  ~ a b l t t t  t i t  Ucd  

(86) 
+ [2 - m ' -  m"+ (2 - m)(2 - m')(2 - -  ,t,~tt]'l"qP]')j,~cdl m',ca, pr m"tqs,db 

where we replaced 26ram, by l + ( 2 - m ) ( 2 - m ' )  to obtain a more symmetric 
expression. The first term on the right hand side of Eq. (86) originates from the 
last two terms of Eq. (85) and corrresponds to the diagram 3 of [47]. 

Using Eqs. (72) and (73) one may verify that our expression for '~Q~ is fully 
equivalent to the expressions derived in [45], [35] or [50]. Similar technique can 

--1 m ab be used to find the explicit form of the linear part m ( E~ [H, T2]) of the 
coupled-pair equations. The derivation is then somewhat simpler since the four- 
particle density matrix does not appear. This approach is particularly convenient 
in cases when the standard diagrammatic technique may not readily apply, such 
as in various multi-configuration approaches. For example, we found the present 
method very useful in deriving the explicit form of the spin-adapted multireference 
linear coupled-cluster equations, which include connected semi-internal three- 
and four-particle cluster operators [53]. 

7. Clifford algebra unitary group approach 

We have seen in Sect. 3 that Clifford algebras appear naturally in the description 
of many-fermion systems. The 2" basis elements of the Clifford algebra C, can 
be related with orbital occupancies of spin-free antisymmetrized states (Slater 
determinants), Eq. (26). These simple "building blocks" can be conveniently 
numbered and used to obtain fully spin-adapted CAUGA [28]. In this section 
we wish to draw attention to the possibility of using only partially spin-adapted 
bases in CI calculations exploiting the CAUGA scheme. Let us briefly summarize 
the basic tenets of CAUGA. 

Interpreting the occupation numbers m~, m2 . . . . .  mn of the basic building blocks 
(antisymmetrized states) (26) as binary integers ( m l r n z " "  m , ) 2 ,  mi=0, 1, we 
can conveniently label them by single integer index p [15, 28] 

p - - - p { , , , , } = 2 " - ( m l m z ' ' "  m,)2. (87) 
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The matric basis of U(2 n) is now defined by Eq. (29) with [I] and [J] interpreted 
as ordered sets of orbital rather than spinorbital indices. Replacing [I]  and [J] 
by corresponding orbital occupancies, we can label each U(2") generator by a 
pair of indices p and q defined by Eq. (87). Henceforth, these generators will be 
denoted by Epq. As discussed in Sect. 4, the U(n) generators, Eq. (33), can be 
expressed through the U(2") generators using Eq. (39) (of. also [28, 29]). Employ- 
ing the labeling of Eq. (87) and designating the U(n) generators by Aij, we obtain 
[29, 15, 28] 

2 n 

A.= E mrE,,, (88) 
p = l  

where m p are occupancies of the pth building block, and 

Ai j=( -1)  j-i+' E (-1)s:(q)Ep+~.p+, ', (89) 
p,q , r  

where 

"r =-- r,j(r, q), r '~  rj,(q, r), 

"Ckt(U, V) = 2"-1(2 I-k+l U + 2V + 1), 

with 

p = 1 , 2 , . . . , 2  "-j 

q = 0, 1 . . . .  , (2 j - i - 1  -- 1), 

r=0 ,  1 , . . .  , (2 i - l -  1), 

and S2(q) designating the digital sum of q2 (the binary representation of q). 
Thus, all raising and lowering generators A~ of U(n) are given as linear combina- 
tions of 2 "-2 U(2 n) generators Epq with simple coefficients • (all elementary 
generators have coeffiicents +1). For example, the representation of U(5) raising 
generators is shown in Table 1 (see [15] for a graphical representation of a simple 

Table 1. Example of a general representation of the U(n) generators Aij in terms of the U(2 ") 
generators Epo , Ai~ = ~k :k Epq for n = 5. Only the relevant indices are listed and the sign of each term 
on the right hand side is indicated as :~(). Only raising generators are listed 

ij • represented by • 

12 9,17 10,18 11,19 12,20 13,21 14,22 15,23 16,24 
23 5,9 6,10 7,11 8,12 21,25 22,26 23,27 24,28 
34 3,5 4,6 11,13 12,14 19,21 20,22 27,29 28;30 
45 2,3 6,7 10,11 14,15 18,19 22,23 26,27 30,31 
13 -5,17 -6,18 -7,19 -8,20 13,25 14,26 15,27 16,28 
24 -3,9 -4,10 7,13 8,14 -19,25 -20,26 23,29 24,30 
35 -2,5 4,7 -10,13 12,15 -18,21 20,23 -26,29 28,31 
14 3,17 4,18 -7,21 -8,22 -11,25 -12,26 15,29 16,30 
25 2,9 -4,11 -6,13 8,15 18,25 -20,27 -22,29 24,31 
15 -2,17 4,19 6,21 -8,23 10,25 -12,27 -14,29 16,31 
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structure of this relationship). However, for a given U(n) irrep F(a, b, c), 

1 a = ~N - S, b = 2S, c = n - a - b, (90) 

which pertains to an n-level model of an N-electron system with total spin S, 

( : - 2 )  + ( ~ _ - ~ )  terms if b ~ 0 and ( n - ~ )  terms if b = 0 [15], so we only need 1 

that only a fraction of the total number of terms appearing in the general 
expression (89) is neded for each particular multiplet. 

The spin-adapted states may in turn be represented as linear combinations of 
two-box Weyl tableaux U(2") states, since it can be shown that any U(n) irrep 
with at most k columns is contained at least once in the totally symmetric k-box 
representation of U(2") [54]. For example, a subduction of the two-box rep- 
resentation [2] of f ( 2  6) -= U(64) of dimension 2080 to U(6) gives 

6 5 4 

[21~U(6)= 2 [2k] + Y~ [2kl] + E [ 2k12] 
k ~ 0  k = O  k = 0  

+2 k~_o [2k13] q-3(k~= ~ [2k14]+[15]+[215] +[16]), (91) 

where [2 ~ ---[0], [2~ k] -= Ilk], etc. The simplest way to obtain this expansion is 
to decompose the one-box representation as [0] + [1] + [12] + .  �9 �9 + [16] and then 
calculate all possible inner direct products using the Littlewood-Richardson rules 
[55] while discarding all the irreps that enter the antisymmetric part of [1][~[1]. 
Equation (91) indicates that the frequencies of irreps that correspond to singlets, 
triplets and doublets are equal to unity. In general, these frequencies only depend 
on the spin S and are equal to S for S odd, to (S+�89 for S fractional, and to 
(S+ 1) for S even. 

Thus, in the many-electron case we only need to consider the symmetric two-box 
states, which we shall represent for simplicity as follows 

[p]q] = [ p ~ ] ) .  (92) 

For example, the highest weight state in any irrep F(a, b, c) of U(n) is represented 
by [2~[2b+~]. 

One of the advantages of CAUGA is the fact that it is not dependent on any 
specific coupling scheme, even though the most natural coupling is that charac- 
terizing the VB-type Ruiner states. However, one can just as easily construct the 
Gel'fand-Tsetlin states of UGA if desired [15,28]. For any chosen coupling 
scheme the action of the U(n) generators Aij reduces simply to the action of 
Epq'S on the two-box tableaux states (92), which is very simple indeed. Defining 
the unnormalized states (Plq) as 

(Plq) = (1 + 6pq)l/e[plq], (93) 
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we get that 

E~( plq) = ~jp( ilq ) + 3jq( ilp ). (94) 

In other words, the operator replaces the index j by the index i and only if the 
double occupancy is created or destroyed, we must include an extra factor 
of x/2. The double occupancy of our two-box tableau can only occur when 
b = S = 0 .  

It is worth noting that any set of the basic two-box states (92) forms an orthonormal 
system. This observation suggests a particularly simple practical implementation 
of CAUGA employing a suitably chosen subset of the two-box states as a CI 
basis. Clearly, if we wish to accomplish a full CI, we choose the smallest possible 
set of two-box states, which span the carrier space for a given irrep F(a, b, c) of 
U(n). Usually, this set will also span additional carrier spaces for one or more 
other irreps of U(n). However, as implied by the decomposition shown in Eq. 
(91), the additional representations which mix in will be usually low dimensional 
irreps with high spin multiplicity, so that the dimension increase should be only 
a moderate one. This dimensionality excess should be well compensated by the 
simplicity, and thus the resulting efficiency, in the calculation of the matrix 
representative of the Hamiltonian. 

We thus consider a possibility to employ directly the two-box tableau states (92) 
as a CI basis, since the higher spin-multiplicity states will be automatically 
eliminated by the diagonalization procedure. A very similar approach has already 
been implemented in a vector processing environment [56]. 

The number of two-box tableaux that must be generally considered for a given 

(1( ~ ) irrep F(a, b, c) of U(n) is easily seen to be equal to for b r 0 and to 
a c 

l ( a n ) ] ( : )  +1 } when b = 0 ,  since the corresponding states carry the (generally 
/ \ r / \  ~ 

2 
reducible) direct product representation [la+b][][la],  the dimension of [1 m] 

being (mn)" Equivalently' they are given bY the number ~  p~ c~176 

of 0's and l 's  in a binary representation of the highest weight state indices 2 c 
and 2 b+c. The structure of this two-box basis is best apparent from its graphical 
representation given in Figs. 7 and 8 of [15]: If we represent the states (92) on 
a rectangular grid of 2 " x 2  n points, then the states that are associated with 
the same orbital occupancies, and whose linear combinations will yield fully 
spin-adapted states (for the connection with Gel'fand-Tsetlin and Ruiner 
bases see [15,28]), are lying on the same co-diagonal (cf. Fig. 8 of [15]). 
The number of such state is given by the Young-Yamanouchi genealogical 
spin branching diagram values f (N ,  S), (see, e.g. [20], Chap. 1). The relevant 
labels are most easily generated by permuting zero and unit entries in binary 
strings representing the highest weight state labels 2 C and 2 b+c, Eq. (87). 
Thus, for example, for N = n = 5  and S=�89 we need the irrep F(2, 1,2) 
whose highest weight state is [4[8]. The possible integers labeling other states 
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are thus 

4:11100 8:11000 
6:11010 12:10100 
7:11001 14:10010 

10:10110 15:10001 
11:10101 and 20:01100 

13:10011 22:01010 
18:01110 23:01001 
19:01101 26:00110 
21:01011 27:00101 
25:00111 29:00011, 

(95) 

(5) 
since in this case 2 = = 10. We thus have 102 two-box tableaux to represent 

75 states of  F(2, 1, 2), as follows from the dimension formula [12] 

b+l(n+l l (n+l  ). (96) dimF(a,b,c)=.. ~ a / \  c 

Obviously, the largest boost  in the dimension will result from the states having 
the largest number  of  open shells. 

To estimate, in general, the relative increase in the dimensionality of  the CI  
problem, we take the ratio of  the number  of  two-box tableaux and of the dimension 
of  F(a, b, c) which gives (assuming b r 0) 

f =_(na)(~)/dimF(a,b,c)_(n+l-a)(n+l-c) 
( b + l ) ( n + l )  

� 8 9  n+I-�89 
- ( 9 7 )  

2 S + 1  n + l  

We can similarly consider the case when b = 0 so that generally 

� 8 9  1 
! i m f -  2 S +  1 1 + 3s,0' (98) 

To get a better idea of  the possible boost in the dimension when two-box tableaux 
are used directly as a basis, we present some typical cases in Table 2. When 
considering, for example, only singly and doubly excited configurations from a 
given set of  reference configurations, this factor will be at most as large as for 
N = 4 and n ~ oo, so that the dimension boost will not exceed 50% for the singlets 
and 33% for the triplets. 

To conclude, we would like to stress once again the simplicity of  the relevant 
algebra in calculating the matrix elements of  U(n) generators or of  their various 
products in the two-box tableaux basis. This algebra is particularly simple for 
non-singlet states since in this case no double occupancies of  two-box tableaux 
are possible, so that all the matrix elements are either 0 or 1. Moreover, the 
integers labeling these tableaux separate naturally into the two disjoint sets, say 
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Table 2. Relative dimensionality increase f Eqs. (97), 
(98), for typical values of n, N and S 

n N S f 

4 4 0 21/20 
1 16/15 

6 6 0 210/175 
1 225/189 
2 36/35 

12 6 0 24310/15730 
1 32670/23166 
2 9504/8580 

oe 6 0 2 
1 5/3 
2 6/5 

eo 10 0 3 
1 7/3 
2 8/5 

N o �89189 
l �89189 
2 ~(�89 

101 

f~l and ~2 [cf. example (95)] and all the generators Epq interchange only the 
integers within each set Ft~, so that for each set Ft~ we can consider a different 
effective representation of A 0 in terms of Epq (cf. Table 1). In the above example 
of F(2, 1, 2) we see that out of the eight possible Epq operators we only need the 
2nd, 3rd and 5th for ~1 and the 4th, 6th and 7th for ft2. 

Moreover, the action of any A~ on an arbitrary two-box tableau can be easily 
computed directly using the following simple algorithm [valid for the irreps with 
b r 0 or, generally, when the renormalized states, Eq. (93), are used]: Consider 
A~j[r]s] (or Ao(rls ) if b = 0). Using a complementary binary representation of 
( r - I )  and ( s - 1 ) ,  change 0 and 1 in positions i a n d j  into 1 and 0, respectively, 
in each binary representative ( r -  1)2 and (separately) ( s -  1)2, if possible, and 
attach the sign (-1)  k, where k is the number of l 's  between the ith and j th  
positions. Otherwise, matrix element vanishes. Using again the above example, 
we thus have 

A12118122] = A12[01110101010] 

= O o l l o l o l o l o ] + [ o 1 1 5 o l l o o l o ]  

= [ 10[22] + [18114], (99) 

where the binary digits being interchanged are printed in bold face. Likewise, 

A~3118122] = A13[01110101010] 

= (-1)1111010101010] = -[6122], (100) 

etc., as may be easily verified using Table 1 and Eq. (94). Clearly, this process 
may be easily repeated as many times as necessary when products of generators 
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must be considered. In fact, the rules illustrated by Eqs. (99) and (100) have a 
very simple first quantization interpretation, since each box of the Weyl tableau 
defining CAUGA states, Eq. (92), can be viewed as a Slater determinant. Thus, 
denoting the orbitals transformed by U(5) as ~b~, i =  1 , . . . ,  5 and the orbital 
determinants as  1{/~1~2 "~ ~ ~k[, we can write Eq. (99) also in the form 

A 1 2 [ 1 8 1 2 2 ]  ~-- A12(1(/~2(~3(~41 @ [(fi2 ~/~4[) 

= [10122] + [18114]. (101) 

The possibility to write the two-box quasi-spin-adapted configurations (92) as 
direct products of  two Slater determinants is implied by the fact that they carry 
the representation [ t a+b ] [~ [ 1 a ], as noted earlier. 

We note, finally, that our binary representation also gives immediately the weight 
generator matrix elements (i.e., the orbital occupancies) when we add both binary 
numbers in [Plq] digitwise. For example, considering again the state [18122 ] = 
[01110101010], the digitwise sum gives the occupancies (02120). 
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